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THE ANALYSIS OF NONLINEAg DYNAMIC BEHAVIOR (INCLUDING SNAP-THEOUGH)

OF POSTBUCKLED PLATES BY SIMPLE ANALYTICAL SOLUTION

C. F. Ng

SUNNARY

Static postbuckllng and nonlinear dynamic analyses of plates are usually

accomplished by multimode analyses, although the methods are usually com-

plicated and do not give straightforward understanding of the nonlinear

behavior. Assuming single-mode transverse displacement, a simple formula is

derived in this paper for the transverse load-dlsplacement relationship of a

plate under in-plane compression. The formula is used to derive a simple

analytical expression for the static postbuckling displacement and nonlinear

dynamic responses of postbuckled plates under sinusoidal or random excita-

tion. Regions with softening and hardening spring behavior are identified.

Also, the highly nonlinear motion of snap-through and its effects on the over-

all dynamic response can be easily interpreted using the single-mode formula.

The theoretical results are compared with experimental results obtained using

a buckled aluminum panel, using discrete frequency and broadband point excita-

tion. Some important effects of the snap-through motion on the dynamic

response of the postbuckled plates are found.

INTRODUCTION

If a plate is curved, initially or subsequently in service due to post-

buckling stresses, the static and dynamic behavior in the transverse direction

can be highly nonlinear, which may include hardening-spring, softenlng-sprlng

or even an instability condition with snap-through motion. Theoretical and



experimental results of large amplitude vibration of postbuckled plates under

sinosoidal excitation were obtained by Yamaki and Chlba, 1 however, snap-

through motion was not studied. The characteristics of snap-through motion i_

a postbuckled beam under sinusoldal excitation was studied by Tseng and

Dugundgi. 2 A theoretical study of the random response of an initially curved

beam including snap-through motion was done by Seide. 3 However, a thorough

and straightforward understanding of the nonlinear behavior (particularly

snap-through motion) of general curved plates is difficult to gather from the

previous research results. The present study was conducted to fill this gap

using a single-mode analysis method and experimental investigation with

sinusoidal and random excitation forces on a postbuckled plate.

GENERAL FORMULAE FOR NONLI_£R BEHAVIOR OF PLATES
..

Equation for Equilibrium in the Transverse Direction

For a plate under uniaxial compression with uniform edge displacement,

the relationship between modal displacement and modal force for the buckling

mode is given by (derived in Appendix I):

3 (la)
for static equilibrium: q - Rq ffip

for dynamic motion:

where

q, nondimensional displacement parameter,

Q, modal displacement

Qp, value of Q at R = 1

R ffi_ - I

X ffi u/u c

u ffiin-plane edge shortening displacement

q/_2 + 2_1/_ + (q3 - Rq) = p

ffi Q/Qp

(lb)



uc = value of u at which buckling starts

R = linear natural circular frequency of the flat configuration

= modal damping coefficient

P
p = nondimensional force parameter =--

' KQp
l

P _ externally applied modal force

K = linear modal stiffness of the flat plate

Qp, Uc, R, _, K depend on the assumed shape function of the mode

and other plate parameters. The nondimensional parameters, q, R, P, can be

evaluated after Qp, Uc, K are found by experiments or theories. The

equation (la) involves only nondimensional parameters and is therefore

independent of the plate parameters. Using equation (I), the nonlinear static

and dynamic behaviors of a plate can be predicted and they are applicable to

plates of any size, boundary conditions, material properties.

From the plot of P versus q for static condition (fig. I) regions of

hardening and softening spring behavior are found and there are also regions

of negative stiffness, (e.g., between A and B). Notice that for R = I,

dynamic motion starting from C will pass through A and B and ends up

at C'.

Static equilibrium positions are found by putting p = 0 in equation (I)

and correspond to the points where the curve crosses the q-axls in figure I.

Note that for R > 0, there are three equilibrium values of q; RI/2,

-RI/2 and zero. The last value, zero, is an unstable position as the °

stiffness is negative. We can rewrite equation (I) as

3 2 (2a)
q - qo q = p

q/f_2 + 2_I/f _ + (q3 - q2q) = P
(2b)
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where qo = equilibrium position = R I/2.

From equation (2a), dp/dq = 0 when q = +11J_ qo ' these are the end

points of region of negative stiffness, e._., A,B in figure 1

Undamped Free Vibration of Postbuckled Plate

From equation (2b), neglecting damping effect and external force, the

free vibration is obtained as

1 1, 2

_" q + (q3 _ qoq) = 0 (3)

With the substitution q = q _ , equation 3 can be integrated. For the

initial conditions q(o) = 0 ana q(o) = qs (qs is the initial position, qs > qo )

at t = 0 the solution can be written

• 2 f12 2

2 2 2
With the expression qs + q - 2 qo set equal to I, the above formula is a

standard linear vibration equation for initial value problem.

The other extreme point of vibration, after the system was released at

o

qs, qe, is found by substituting q = 0 in equation (4) to obtain

2 2)1/2
qe = -qs or qe = (2 qo- qs (5)

2 2 2 .2 2
When qs < 4"2qo' 2qo - qs > O, 2qo - qs < qo

2 2 2
second solution, 0 < qe < qo and qo - qe = qs

is around qo' from qs (> qo ) to qe (< qo ) "

is on the negative side and thus not reached practically when

(since qs > qo )' for the

2
-- ao, thus the oscillation

The first solution qe = -qs

qs < ¢2"qo "



2 2
When qs > _ qo' 2qo - qs < 0, the second solution gives an Imaginary

number, thus the only possible solution is qe = -qs, which means that the

oscillation is from qs to -qs" Also the motion passes through both

equilibrium positions of qo and -qo and q = 0 is the new mean

position, instead of .the 0riginal static value, qo"

2 2
When qs = _ qo' 2qo - qs = O, thus qe = 0.

dq
From (4), by substitutin_ q =_, it can be written as.

dq

dt = R[(q_ 2 2 q2 2 1/2 (6)- q )(qs + - 2 qo )]

By numerical integration of (6) for the motion between the extreme points,

qs, qe, time histories for the free vibration of various amplitudes were

determined for a plate with qo = I and are shown in figure 2. When

q < _ , It can be seen that the period of vibration increases as amplitude
S

increases and the motion is not symmetrical about the static value, i. When

q = _= 1.414, the period is theoretically infinity as it

J

takes infinite time to approach zero. However, when q > 47 the period will
S

decrease with increase of amplitude. The displacement also passes through

both equilibrium positions, qo = I and qo = -I, thus indicating

snap-through motion. The change of mean positlon is qo (from qo

to 0). Also the rms value Is found to be approximately 1 when qs = 1.5.

Essentially, the postbuckled plate shows softening sprinE behavior initially

and after snap-through motion accompanied by a change of equilibrium position

it shows a hardening spring behavior.

The free vibration response characteristics reported In reference 2 also

shows that resonance frequency decreases to zero when snap-through motion Is

initiated and the frequency increases when the magnitude of snap-through

motion gets lar_er.



RandomVibrat£on

The method of equivalent linearization can be used to solve the nonlinear

forced vibration equation with damping (from eq. (2b));

+ (q3 2 q)= p (7)
_2 q+2_ -qo

The mean square displacement of a buckled plate, <q2> due to white noise

excitation with spectral density Spp can be obtained for small and large

magnitudes, as described in Appendix II.

4 (_ ffiH_S /4_ = is a nondimensional
For small excitations _ < 0.45 qo pp '

force parameter), there is no snap-through motion and

4 + 3=)1/2]/3 and _ = qo " (8)<q2>= + (qo

4

For a _ 2 qo there is persistent snap-through motion in almost every

cycle of oscillation and

<q2> ffi[qo2 + (qo4 + 12 =)i/2]/6, and _ffi 0 • (9)

4 4

For 0.45 qo _ a < 2 qo' snap-through motion is intermittent, the mean

position as well as the mean square values are very unsteady. However, the

mean square value can be taken approximately from interpolation between the

two end points--the point of no snap-through and persistent snap-through

motion.

From equations (8) and (9) the variation of <q2> with the excitation

parameter a for different values of compression parameter % is shown in

figure 3. The rate of increase of response with excitation is highest when

intermittent snap-through motion starts. When persistent snap-through motion



is attained, the response increases muchmore slowly with increases in

excitation, showing hardening spring behavior.

From figure 3 and equations (8) and (9), the variation of response with

compression parameter for various levels of excitation are plotted as shown in

figure 4. For a given excitation level, the response increases with increases

in compression as it approaches the buckling point. After initial post-

buckling, persistent snap-through occurs and the response continues to

increase until a certain point for which only intermittent snap-through motion

can be induced. After that point, the response decreases with further

increases in compression. The point of maximumdisplacement corresponds to

the point for which the excitation is just sufficient for persistent

snap-through motion. Also, the point of maximumresponse occurs at

increasingly greater plate curvatures, or larger values of u/uc, as the

excitation level increases. These trends have also been predicted in a

5
qualitative description by Jacobson.

EXPERIMENTAL RESULTS

..... The Test Set-Up

Dynamic tests on several 0.032-inch thick aluminum plates were carried

out using point excitation at the center of the plate by an electromagnetic

shaker. Displacement response was measured by strain gauges. As shown in

figure 5, excitation force was applied in both directions but without applying

any bending constraint on the plate using rounded point screws connected

together to the shaker by a rectangular frame around the specimen. This

direct attachment method of excitation was used instead of the base excitation

of the supporting frame because it can ensure large excitation force in the

low-frequency range (0-20 Hz).

7



Results for Discrete Frequency Excitation

In a preliminary test, it was found that snap-through motion was most

readily excited by an excitation frequency of 5 Hz. The variation of the

rms value of strain response and reduction of the mean value of strain due to

snap-through with ex_itatlon level are plotted in figure 6. There is a region

of unsteady response as snap-through motion is initiated. When more power is

put into the shaker, the excitation force decreases with increase of

response. This is accompanied by a comparable reduction in the mean value of

the oscillation approximately equal to the original static value, as predicted

in figure 2.

Random Responses

Broadband (0-I00 Hz) excitation was used to excite random response

(fig. 7). The low-frequency response (0-20 Hz) dominates the strain response

when snap-through motion is initiated at u/u c ffi4.0 (fig. 7) and the

fundamental modal response is not evident. The dominance of low-frequency

response for large amplitudes of post-buckled plates was also reported in

references 5 and 6.

Figure 8 shows the transfer functions (straln/force) of a flat plate with

no buckling load, u/u c = 0, for various excitation levels. The resonance

peak broadens and the overall level decreases as excitation level is

increased. This is a typical hardening spring behavior.

Figure 9 shows _ransfer functions of a buckled plate. The resonance peak

also broadens and decreases as did the flat plate, but the response at low

frequency increases as excitation level is increased. Increases in the low-

frequency response are due to the onset of snap-through motion for which the

natural frequency is very low (fig. 2).
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The variation of meansquare strain parameter (square of the ratio of

dynamic strain to static strain at R = i) with compression parameter is shown

in figure I0. The general trend agrees well with predicted results from the

single-mode formula (fig. 4) and thepoints of maximumresponses are near the

curve for static Values. However, there is a large discrepancy between the

experimental results and theoretical prediction for an excitation level of

a = 6, which indicates that the single-mode representation used in the

analysis over-predlcts the stiffness of the buckled plate. More modesmaybe

required to represent the deformation pattern and give a lower overall

stiffness value.

CONCLUSIONS

A simple formula was derived for the transverse load-displacement

relationship of a plate under in-plane compression and compared with results

from experiment using electromagnetic excitation method on an aluminum plate

with postbuckling deflection. The comparison shows that the simple formula

predicts the general trend of the highly nonlinear behavior of snap-through

motion under dynamic excitation. The general characteristics of snap-through

motion are:

(i) The mean position of the oscillation is zero;

(2) The r.m.s displacement value is approximately equal to the static

equilibrium value of the plate when snap-through motion is Just

initiated;

(3) Snap-through motion is most readily excited by low-frequency

excitation; and

(4) For a given random excitation level, the maximum response is found in

the postbucklin_ confiEuratlon when the excitation is Just sufficient

for persistent snap-through motion.

9



The identification of the nonlinear characteristics found in post-buckled

plates should be very helpful in studying the corresponding characteristics in

other curved plates such as cylindrical panels.
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APPENDIX I

Derivation of Single-Hode Formula

For Any Plate Under Compression

The starting point is the Von Karman equations of large deflection of

plates. The tranverse equilibrium equation and the in-plane comptability

equation can be expressed, respectively, as

and

where

DV4w = h + t o --B2w+ o --82w + 2T _2w

x 8x2 y 8y2 xy _y (A-I)

1 V4F =(_y)2 _2w _2w
E 8x2 8y2

(A-2)

_2F _2F _2F

x By2 ' y _x2 ' xy

F = Airy stress function

Ox, Oy, Txy = in-plane stresses

w = transverse displacement

D = plate flexural stiffness = EtB/12(l -v2)

E = modulus of elasticity

t = plate thickness

= Poisson's ratio

h = transverse load per unit area, i.e. the pressure.

The steps are the same as in the Rayleigh-Ritz method described in reference 4

and summarized as follows:

ii



1. Transverse Displacement :

w(x,y) = tQ_(x)_(y)

where Q is the modal displacement coefficient

_(x) _(y) is the buckling mode shape function.

The corresp0nding modal force coefficient, P, is

fb fat h(x,y) _b(x) @(y) dxdy •
0 0

2. Stress Function: substituting w from (A-3) into (A-2),

1 p2 1 p2
F = Et 2 Q2 [ [ fij _i (x) _J(Y) -_ x -[ y

lj

where

.

el(x),

respectively,

Px, Py are mean compressive stresses in the x and

Mean Compressive Stresses: for the edge displacement

I _w 2]. -- f
0

From (A-4) and (A-5),

_j(y) are higher order functions related to ¢(x),

fij depends on i,j (details in ref. 4); and

y direction.

(A-3)

(A-4)

_(y),

(A-5)

12

E 2
P =P C 0

x u _ Jfi_92_ xy
(A-6)

where

PU " (l_V2)

Pu is the mean compressive stress due to edge shortening if the plate

is flat and Cxy is a constant related to _(x), @(y).

Similarly, with edge displacement in y direction being zero,

p = vp -E C Q2
y x y

(A-7)

Cy is a constant related to _(y).



4. In-plane Strain Energy:

b a

Ve f f
O O

2--'E't _ a2 xy2[o + - 2v o o + 2(1 + _) ¢ ] dxdy
y xy

(A-8_

From (A-4), (A-6) and (A-8),

tab ' ' 2 2

Ve"2T - 2VPxPy ) + Ztab eQ 4 (A-9)

where e is a constant related to fij in (A-4).

5. Bending Strain Energy:

Dt b a (_2 w 32w_ 2

Vb=2- fo fo '_-'_+_-_'
dxdy (A-10)

From (A-3) and (A-10),

Vb -- DQ 2 d (A-If)

where d is a constant related to @(x), _(y).

6. Linear Static Equilibrium Equation:

This equation applies for flat plate with small value of Q, for Which

V e can be neglected.

Substituting (A-9) into the above equation,

2DdQ = P

defining K ffi2Dd, the linear modal equilibrium equation Is obtained.

KQ = P
(A-12)

K is thus the linear modal stiffness.

13



7. Nonlinear Static Equilibrium Equation:

_(Ve + Vb) = p
_Q

Substituting from steps 4 and 5 and rearranging.

C

Etab Q2Q [(2e + (x_2)2 + C 2)T
1 - v Y

P tabC
U

X_ + I] 2Dd = P
Dd J

Dd

Substituting tabC = Pc
xy

2Dd = K, K is the linear modal stiffness from (A-12).

C 2

(2e + ( xy 2 Etab I2) +C )--=--y Dd 2

I - _ Qp

(A-13)

(A-14)

the equation (A-14) becomes

2 - I)]K=P

Qp c

(A-15)

This is the nonlinear modal equilibrium equation. Q2/Q_ is the effect

of large displacement, Pu/Pc is the effect of compression.

Defining

u P
E c u u

= P , and- =-

(i 2] a c P u-- C C

, substituting q=Q/Qp, p = P/KQp,

The general nondimensional equation is obtained by dividing (A-15) by

KQp.

3
q -(u/u c - i) q = p (A-16)

Putting p=0 for loading with in-plane compression only,

For

P

u<l(u
_-- _-- < I), q = Q = 0

C C

(A-I 7)

14



For
P Q2 P
___u>p l(U > I), 2 - (_ - i)

c c Qp c

or 2 (u___ i)
q = u

c

(A-18)

From the above it can be seen that Pc and uc are the critical mean

compressive stresses and edge shortening respectively, thus when

u °r q = 1
--=u 2 Q=Qp
c

(A-19)

Therefore, _ is the value of Q when u/u c = 2

8. Kinetic Energy

b a
= 1

VT _ pt / / _2 dx dy
o o

(A-20)

where 9 is the density.

Substituting (A-3) to (A-20)

1M_2VT= (A-21)

b a

where M = pt3 f f @2(x) _2(y) dx dy M is the modal mass.

o o

9. Lagrangian Equation for Linear Vibration

BVb 3 @VT
_+__ _ _- p

_Q Bt B_

(A-22)

Using results from (A-12), (A-20), the equation of motion is obtained,

KQ + MQ" = P (A-23)

The natural linear circular frequency of the flat configuration is thus

given by

_2 = K/M (A-24)

15



The modal massM can be written in terms of

K
M = m

_2

(A-25)

i0. Lagrangian Equation for Nonlinear Vibration

_(Ve + Vb) _ _VT
+

8Q _c
= p (A-26)

using results from (A-15) and (A-23) the modal equation of motion is

obtained,

Q2 Pu

[- p
Qp2 c

1 ] KQ + MQ" = P (A-27)

Dividing both sides by KQp and using results from (A-16) and (A-25), the

nondimensional equation of motion is obtained,

I oo

q - Rq +--_ q -- p (A-28)

The damping effect can be similarly included by dividing the modal damping

force 2M_ (_ is the modal damping coefficient) by KQp, which gives

2_ •
_-q. Thus the nondimensional equation of motion can be written as

3
3-- + +q
R2

-Rq --p (A-29)

16
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APPENDIX II

Derivation of Nonlinear Acoustic Response Using

gqulvalent Linearlzatlon

Flat Plate

The linear equation of motion for the flat plate is

1 ""
_q+2 q+q=p

The mean square value of q, <q2>, due to white noise excitation with

spectral density Spp is given by <q2> =

nondimensional excitation parameter•

_nS

----_-a where a is a
4_ - '

Postbuckled Plate without Snap-Through Notion

The nonlinear equation of motion for the postbuckled plate is

!_'_n2q + 2 _ + (q3 - q_q) = P

Substituting q = qo + Aq into equation (B-2), (Aq is the dynamic

displacement around the static value qo ), the equation become

i_ Aq'+ Aq
3

2q2 _ + (Aq + 3Aq
n2

The equivalent linear equation is

where k =

o + 2Aqq2o) = p

i__ Aq + 2 Aq + kAq
G2 = p

_(Aq 3 + 3Aq2qo + 2Aqq20)

_Aq

= 3 <gq2> + 2q 2
O

(B-l)

(B-2)

(B-3)

(B-4)

17



Thus from eq. (B-4)

2> = P____EP= =
<Aq 4Ek 2 (B-5)

3<Aq2> + 2q o

Solving eq. (B-5) for <Aq2>

i

4 3=)2 ] /3 (B-6)[_q2° + (qo +

3. Postbuckled Plate with Snap-Through Motion

The mean position of q, is zero, thus equation (B-2) is used directly and

the equivalent linear equation is

f12 q + 2 _ q + kq = p (B-7)

where

3 3

_(q - qo q) 2
k = ffi3<q2> -

go8q

From eq. (B-7)

<q2> = pp =
4 _k

Solving eq. (B-8) for <q2>

= (B-S)

3 <q2> _ q_

2 4 =)1/2]/6<q2> = [qo + (qo + 12 (B-9)

4. The Excitation Level for Snap-Through Motion

<q2> 2
For (B-9) to be valid, _ qo so that most of the oscillation consist

of complete snap-through motion (the r.m.s, of which is approximately

2
qo, as shown in fig. 2). By substituting <q >2from (B-9) to <q >2>__qo

4

a > 2 qo is obtained as the condition for persistent snap-through motion.

18



If <q2> < 1/3 q_, the oscillation rarely gets into the region_of

negative stiffness (between A and B in fig. I), there is no snap-through

motion. By substltuting <q2> from (B-6) to <q2> < I/3 q_, we obtain

4
a < 0.45 qo is obtained as the condition for no snap-through motion.

19
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